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1, Introdustion

In the theory of radiative transfer there are several problems
which can be solved by finding the solution H(u) of the non-linear
integral equation

1
1 (u)H(u)a
(1.1) m-l-x[&-u-&-;%)—‘-‘

which 1s called Chendrasekhar's equation. The books by
Chandrasekhar [1] and Kourganoff [2] contain discussions of this
important equation; and these books also present the contributions
of various mathematicians who have shown that (1.1) can be solved
explicitly by using function theory techniques based on analytic
continuation. Recently, (1961) C. Fox [3] has shown that (1.1) can

be converted into the linear equation

1
(1.2) H(x)G(x) = 1+xf E‘“&H_(:)d“
o

where G(x) is known and g(x) is prescribed. The equation (1.2) is a
singular integral equation with a Cauchy kernel and it can be
solved for H(u) by using an extension of Carleman's method as shown
for example in Muskhelishvili's book [4].

Chandragsekhar's equetion can be linearized by first writing
it in the form

61(u)du

(1.3) xg(x) = My (x) +4y(x) | o

and then integrating each side of this equation after it has been
multiplied by the factor 1/(x+€). This gives
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and after mltiplying (1.4) by bl(e) and using (1.3) we find

b, (x)ax
(1.5) 61(6)61(5) = A+ -——i-:—E— .
0o

This is essentially the procedure that was used by Fox to pass from

(1.1) to (1.2). It suggests the possibility of solving

61(u)du

u=-Xx

1
(1.6) My (x) + 4y () [ = £,(x)

0
which 18 both singular and non-linear. Equation (1.6), in turn,

suggests an investigation of the more general equation

1 ML) +4(e) [T L g
L

vhere { is an interior point of the simple smooth arc L which
connects the points To and T in the complex t-plane.

One of the purposes of this paper is to show in Section 2
that the equation I can be solved explicitly by using elementary
function theory techniques. It turns out that the solution of I
is in some ways simpler than the solution of (1.3). We will also
be concerned with the solution of some other non-linear equations.

In Section 3 we show how to solve




2
11 22(2) - [f %‘E_l‘c‘l] - £(2)
L

and Section 4 is devoted to the solution of

2
111 w262(2) + [f ﬂ_‘}gl] - £(0) .
L

In Section 5 we show that there is a connection between equations
I..1II, IITI and certain problems in potential theory.

The equations I, II, III may be of interest for at least two
reasons. In the first place, they are of interest in themselves as
Cauchy singular, non-linear integral equations which can be solved
explicitly. 1In the second place, they present a formulation of
certain non-linear boundary value problems. Equation III, for
example, is intimately related to a problem in two-dimensional
potential theory which has a number of physical applications. This
is the problem of finding a potential function in a domain D when
its normal derivative is prescribed on one part of the boundary C;
and the magnitude of its gradient is given on the remaining part
of C. In Section 5 we show how an explicit formula for the solution
of this problem can be found.

The final Section 6 is concerned with a brief discussion of

the non-linear system

NC)f-Vi—'_’%I = £(2)
L

vie) [Reldr o g(e)
L




and some other systems which can be linearized by the method
developed in Section 2.

We state here the main conditions and assumptions upon which
our analysis is based. If 7 = t(t) is the equations of the simple
smooth arc L directed from 7, to 7y # 7, let L[ro,rll denote the
set of points T = 7(t), t, < t < t,; and let L(7,,7,) denote the
set L[ro,rl] minus the endpoints 7

o)
simplicity that the unknown function b(r) satisfies a uniform

and Tl' We assume for

H81der condition for any pair of points in L(ro,rl) and thus
guarantee the existence of the Cauchy principal values of the
integrals which appear in I, II, IIXI where { is in L(ro,rl). We
also assume that if $(7) has a singularity at an endpoint a of
L[ro,rll it is such that LT*ﬂl(r-a)é(r) = 0., We will say that a
function with these properties belongs to the class 941. Ir é(<)
belongs to the class 911 it can be shown that

%{‘Qit}dr

satisfies a uniform H8lder condition for any pair of points Cl and
{, in L(To,fl)i and

F(z) -\/~i%3%%I
L

as a function of the complex variable z is such that
ct’m!(z-a)F(z) = 0.

The properties of the prescribed function must match the
properties 1mpiied by the representations on the left-hand side of
I, II, I1I. That is, in accordance with our assumptions about

P, |
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$(t), £(C) must satisfy & uniform Hilder condition on L(t,,7,); and
although it may have a stronger singularity than $(r) at a, £()
mist be such that L, , (£-a)2r(L) = 0, We will say that under these
conditions f£(f) belongs to the class 5”2;

The transformation 2t = (11-ro)v-+(1°+11) maps L[ro,rll
into L{-1,1) a simple smooth arc directed fromt = -1 to 7 = 1.

If we also use 2¢ = (rl-ro)m4-(ro+11) we have

L[ro,rll L{-1,1)

a3 e

which shows that the transformation does not change the form of !
equations I, II, III. - Thus there is no loss of generality if we
assume, 88 we will hereafter, that L in I, II, III is L[-1,1].

2. gggation I

We proceed to show how

(2.1) (0 +bie) [HEM L g
L

can be solved by using the Hardy-Poincaré-Bertrand formula. This
formula states that if y(t,{) is suitably restricted then

@2 [ oy [HREE - B0 [ [HAHRES
L L LL

provided w 1s in L(-1,1). This says that an interchange of the
order of integration on the left side of (2.2) leaves the residue
-wzv(m,m). If $(t) bvelongs to the class :)Jl, defined in the




‘wmw“MWMMNH,
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introduction, the formula (2,2) holds with ¥(7,l) = (1-{2)6(06(1).
The application of (2.2) to

:1? { (1-26)‘%(;){ i(:).drdg

shows, after a little manipulation, that

o (1-£2M(§) $(t)dvdl
(‘20 3) _—2’1.‘“ { - 1/: T=-
2 2
v ([ 428° g s

Now if a solution of (2.1) exists when f({) belongs to A
then (2.1) and (2.3) imply

(1-¢2)1( 2n (1-£2)$(2) 2
(24) &y { ——Gz-_-m-ﬂ‘li-l_w?[ SABLI0E | 124200

+ [f %3%]2 +1—-1“? l:fb(r)df]a
L L

2)

or

2
2 SI-S Ef!g!ds 2,2 i(?)df

2
. [f Qgr)dr]2+[ko'2)‘(k1+mo)]

where

K, -f&('r)d'r
L

Ky -[‘ré(r)dr .




PIRemES

7
The addition of
(2.6) t 2ri flw) = ['am $(o) + 211 b(w) f ii.f__%_f_]
: L
to (2.5) gives
(2.7) I'?.;z { il:f-%-f:‘-gi’it 21 £(o)
- [t T $(w) +f %{’—? + )\:r- 24 [kg '2:.(.:% Faky)) ]
L

Let us introduce the function

2
Fo(z) = (1-22)[f %1 + )\]
L

2
- [2 (1-v )el)dr | ok, + 2k, ) -k§+(1-za)7\2] .
L

This function is analytic for z not on L{-1,1] and it vanishes as
z —»00. As z approaches the point w from the positive and negative

sides of L, the limit values of Fo(z) are

2
Fila) = (1«»"’)[: m pla) + [ Hrlde x]

L

2
- [t 21r1(1-¢n2)t‘(m)+2f (1-12)f(r)ar]
L

T=-0 J

- [2n(k) +ak,) - ¥ +(1-02)2%]
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but, as we can see from (2.7), these limit values vanish, PFurther-
more, it follows from the conditions we have imposed on $ and f,
that the behavior of F, (z) in the neighborhood of an endpoint of L
must be such that

(2.8) £, 1(1-2)F (2) = O

L. _1(1+z)Fo(z) =0,

Let [ be the boundary of a domain which contains L[-1,1]. If z is
in the exterior of [ then

PR X3
1
Fo(2) = mr C crallt

Since (2.8) holds, the path r" can be collapsed into the path C,
composed of the upper and lower banks of L, without changing the
value of the Cauchy integral. At these banks, however, the limit
values Fz(w) vanish. We therefore conclude that F (z) vanishes
everywhere in the exterior of L[-1,1] and hence, if a solution of
(2.1) exists, the constants ko and kl must be such that the two-

valued function

1
2
(2.9) S8(z) = [1—_1;{2{ (Lot )E()dT 4 o (i, + zko)-k§+(1-22)7\2}]§

L

is analytic for z not on L[-1,1]. We will refer to this condition
as condition (A).



T

If for a prescribed r(f) constants kb and kl exist such that
8(z) 1s analytic for z not on L{-1,1), then, as we can see by taking
the limit values of (2.9),

(2.10) [ 88T 4 g0) 42 = 80D
L
(2.11) P T TR W T3

L

and, as subtraction of (2.11) from (2.10) shows, the solution of
(2.1) 1s

b(E) = gy [8*(2) - 87(2)]

1
2 1%
(2.12) - o % f (1-'r'r)_f£")dT + 21t £(L) + 2%
2A(ky + k) -kf;
+
I 1-¢° ]
1
12

1 (1-1 )f(r)dr 2
- lc f - 2m1 £(g) +2

. A (k) +Ck, ) - kg
i 1-C2 i

For the case in which L[-1,1] coincides with the real axis we
find that if f£(€) is real then the solution of

1
(2.13) o) +bte) [ ESE L), <<
-1

is
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1
2 2
(2.14) $(8) = :};wﬂ 1—2? f.(.l.‘_erg.él‘lg.; ord £(8) + 28
- -1

+1—-1€5 f2r(k, +6k ) - K2}

It is easy to verify that (2.12) satisfies (2.1) when S(z)
satisfies condition (A). If we write

1
Q) = 2r [S,(0) +2m £(0))Z

1
- wdy [8,(8)- 2r1 £(£)]7

we have . .
plajar 1 [LISm) +ers £(01P- (3 (x) - mt £(e)1P e
\[ T- = "é'rFI ‘,1/: T=-0 ’
f ﬂ;‘l%‘! - ol S(t)dx
. T- T A T

Now 1f we detach C from L and expand C into r' we have
% 1
fﬂ;}%! - %{[So(t) +2ms f(c)] +[so(c) -2m r(:)]"’}
L
1 S(t)dr
+ T S’;j S

and, since S(t) —» A as T —> 0,

1

S 4 [s 0+ m r(t)]%+ [s,000- 2n1 20
L

Therefore

ORI

e e,




11

(e +bee) [l LA [g¥e) - s7(2)]
i + g3y [3,00) +2rt £08) -8,(0) +2ms £(0)]
- 2 [s*10) -s700)]
- £(0) .

The condition that S{z) must be analytic in the complex plane
slit along L[-1,1], [the condition (A)], does not in general
determine the conatants ko and k1 numerically. This can be seen

by considering the equation

1
(2.15) &) +b(6) [ SLEME Lo,
-1

The function S(z) for this equation is

-

1
2 2
2 ko - 27sk1 - 2Ak°z]

S(z) = |A° +
i 22-1

[,2.2 2 2]2
A2 - 2Nk z + kT - 2Nk, = A ]

= ——

| 22- 1l

and this certainly satisfies condition (A) if we take k, = kl =0,

For these vgluea we have
1
ey =2ddZ.o,

namely the trivial solution of (2.15), On the other hand, S(g)
will satisfy (A) 1f
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2.2 e
Az -‘27\k°z+k°

2
- 2)\1{1 - A

possesses a double zero, that is, if we take 2k1-+k = 0, With this

choice, ko is arbitrary, and

Az -k
S(z) =
z -1
from which
AN~k M-k
)= 24 ° .1, 0
J&E-l 1-¢

and this is the general solution of

7\+[i£{-§}g£-0.

Thus we can see that in order to fix ko and kl uniquely we may have
to impose side conditions in addition to condition (A).

Let us examine the possibility of having a solution ¢ whose
endpoint behavior is such that

1
2
(B) Lrra (a-1)° é(1) =0 .
With this behavior the endpoint behavior of f(f) must be such that
(Bl) cc_“ (a-g)f(g) = 0,
Under condition (B) the order of integration can be changed in
(t)drd
[ [z
L L

and hence by integrating (2.1) we find




e
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A [bteiae - [oie) [oQM00ax | [ ey
L L L L
a [ oceiae + [ o - eterlar = [ ecoiat
L L L
(2.16) a, = [ £(oar
L

Also, after miltiplying (2.1) by £ and integrating:

)‘fct(()dc _f“.r)f(i-'tz‘r.)g(C)d{d‘r -fo(C)dC
L L L L

2
» [ ebttrac- [fb(r)a-r] + [ Do) - (o)l = [ ee(oae
L L ‘ L L
(2.17) 2ak, -2f‘rf(r)d'r = kg .

The substitution of these values for k and kl in (2.9) gives

(2.18) S(z) = [ f.L".E.‘E + X]

and a solution satisfying (B) will exist if f£({) satisfies (Bl) and
(2.18) satisfies (A). When this is the case the solution is

1
$(Q) = E%I [2{——!:-",(‘_"_)‘" +2m £(g) +7\2]§

1
1 f(t)ar 2|2
-m [2[ T - - 2’1 r(C)'.'A] .
L

[}




]
feg——1

PR P s s %+ eaeans o
et

14

Instead of imposing the condition (B) at each endpoint of L
we may wish to impose it at only one endpoint, say the condition

1
(c) g1 102 i) =0,

The function £(£) would then have to be such that

Under condition (C) we find from (2.1) that

xf(nc)b(c)ac f&(r)f‘ﬁ'““'l”"“"id‘ [ astrecerag
L
1
a [ (ee)bccrac - [f“‘!)d‘f]?-l-f(1+‘r)[7\¢(‘r)-f(‘r)]d‘t - [ (eorrioa
L L L L

(2.19) oMk, +1y) = I = 2f(1+'r)f(-r)d'r .

The substitution of this value of k; in (2.9) gives

: 2 [Qenir(elas 2N | 2]3
(2.20) S(z) = [m AT e+ )\]
L

and a solution satisfying (C) will exist if () satisfies (Cy) and
(2.20) satisfies (A). When this is the case the solution 1is

T - T

2k 2
- ETer [ﬁz f§‘1‘+'r.r)f.“r‘2¢°r - 27 £(L) - gl ﬂa]? .
L

2Nk :
““'E’FT[I%!: [lasmieleids | oy o) - °+7@]"'
L
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3. tion 11
In this section, we show that

2
(3.2) r242(0) - [f%—‘l‘él] - £(2)
L

can be converted into a particular case of (2.1). We saw in

Section 2 that if é(7) belongs to the class 5/1 then we have the
identity

(3.2) I-—i"" { (_1;5.?%5). [ i(:)fm;

2,2 d(x)ar]? , 2 2
P (w) + + == (t)ar .
Hence 1if $(<t) satisfies (3.1) then it must satisfy

(3.3) ﬁz{ﬂi%l{ﬂ%d{%--r(o) +§,

or

() 2 [UGH0) (ML L (3 02)e(0) + k2
L L

vhere

k, -fb(r)dr .
L

Equation (3.4) is a singular integral equation of the first
kind which can be solved for

201-¢%)4(0) [l
L

T s il ¥
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The solution is

(3.5)  et1-¢Piie) [l
L

. 1 Jl-rz [k§ -(1;3?)f(1)]d1 Lk
21-t° 1 i 1-¢°
where
w2 [ (-gPipe) [HFdnal
L L
- -2 [Py [T 4 o L) [ (ernrbieracas
L L L L
and therefore
- -fbtr)f(cw)&(c)dcar
L L
(3.6) mh = 2k k, .

Prom (3.5) and (3.6) we £ind that if ¢(t) satisfies (3.1) 1t must
satisfy

(3.7) be) [l o e
L

where
2,3/2
(3.8) P(L) = (-7 ) r(r)dr
(1 ¢ ) Jr
2‘
Lk kokq

+ -+
2r(1-22) /2 g(1-L2) ¢

Conversely, if $(<7) satisfies (3.7) it must satisfy (3.1).
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BEquation (3.7) is equation (2.1) with A = O. We can apply
the theory of Section 2. It follows from the results of Section 2
that (3.1) possesses a2 solution provided

1
2‘
2 kS 12
(-7 ngt)dt o]
el ” [(1 z ) Jf T-2 "1z ]

satisfies condition (A), 1i.e,, Sl(z) is analytic for z not on L.

Since

2,3/2
f(l ’rJF('r)d'r - i f f& Cr!__t_ﬂ)_i_l

L (t-2z)fl-t° L

2
+ ko TdT + 2kokl dt
2
m(1-2%) L (t-z)/1-t w(l-z ) L (r-z)Jl--rE

o4 f (2-£2)%2¢(g)ag
m(l-2 ) L -2

2
k ik _(2k, + k_2)
+ 0 + 0 1 0

(1-2°)  (1-2°)7°

we see that if (3.1) possesses a solution then the constants k° and

k1 mist be such that

23/2 ik (2k +k, z)'!
S.(z) = l- )a 1
1'% [ﬂl-zE)m / TeRD k2

is analytic for z in the exterior of L. If this condition can be
satisfied by a proper choice of ko and kl’ the solution of (3.1) is




18
[ 2.3/2 7%
(3:9) $(¢) = ,g,,-~ - rlv) +.r_$m Q..LHM
%3 ¢ r*(1-7°) “I/: -7
. 1k°(‘2k1+k°1)
| (1-1’2)!; 2
1
?

[ 2,3/2,. ]
- 'EFII - £(t) - 1 1- £(glag
N "2(1_1!)352 { -7

-' 1k, (2k, +k T)
(1-12 )3; 2

L 4

For the case in which L[-1,1] coincides with the real axis
we find that if f({) 1is real then the real solution of

2
(3.200  *%43(8) - [f 5{2’-32] - 1(8) , <g <
-1

is

f 1 "
| 2,3/2
o) b = 3 |- re) ¢ o [ =) reie
LAY T -1

. 1k (2k, +k )
—w
! (1-£€%)

-

provided condition (A) is satisfied.

b, Eggtion II1
The equation

2
(4.1) v242(¢) + [fﬂ;!).gll - £(2)

L
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can be written

(8.2) [n b(2) +fi§l_l%1].[.w1 3! +f9¥:l%'-] - £(8) .
L L

We will solve this equation by using Carleman's method. Let us
introduce the function

L

a function of the complex variable z = x+1y, which is analytic for
z not on L, a simple smooth arc directed fromz = -1 to z = 1. If
we let z approach a point { on L from the positive side of L, and
then the negative side of L; the limit values of F(z) are

(h.4) FHC) = m (o) + [ Halds
L

(4.5) PU(C) = -mt o) + [ HTMT
L

Bquation (4.2) says that these limit values must satisfy the

barrier equation
(4.6) PH(C) - FT(L) = £(2)

where { 18 not an endpoint of L. The function F(z) which satisfies
this equation and has the properties implied by the representation
(4.3) provides the solution of the integral ejuation because the
subtraction of the Plemel) formulas (4.4) and (4.5) gives

(4.7) b(2) = mr [FHQ) -FT(0))

i
i R




If we write

a(z)
(4,8) Flz) = —2 "

zZ +141-2

then (4.,6) implies that G(z) must satisfy
(4.9) 6t (L) +07(8) = b £(L) +2711 n

where n is an integer. As can be seen by using the Plemelj
formulas, the function

+min

f1.2° Y £(1)dr
(4.10) Gy (2) = =
! { (7=3)*(x-2)

is a particular solution of (4.9). ByJ 1_22 we mean here, and 1in
what follows, the branch of the two valued function (1-22)1/2 which
is analytic for any finite z not on L, and such that

8 l-z

zec0 2~ -1

The function Gl(z) is analytic for z not on L and since

.Cz_‘ooal(z) = const. ,

we have Gl(Z)
e

———-—-—-o.

z+1ll-2

cz-b o

The general solution of (4.9) is

G(z) = Ol(z) + Jl-zE p(z)

where p(z) must satisfy




2l

(4,11) pt)-p () =0,

The function p(z) must be taken so that the properties of
QG(Z)/ z -l-iJZI.-zE match those of

F(z)-fi,(r—":)-:—f.
L

This function is analytic for z not on L and it vanishes like co/z‘

a8 z —» 00, provided ¢, = f é(t)dt # 0. Purthermore, in accordance
L
with the assumptions about &(1') admitted in the introduction, the

behavior of F(z) in the neighborhood of an endpoint a of L is such
that £z_’a(a—z)F(z) = 0; and the limit values FY(Z), F~(Z) must
satisfy a uniform H8lder condition. These properties and the
condition (4.11) imply that p(z) must be analytic everywhere and it
mist vanish at infinity, i.e., p(z) = O.

We have now found that

(4.12) P(z) = ¢ ( -111-22)- exp {_m_h-z b £(7)d7 }.
L

(jljzj('r-z)‘
This gives
(4.13) PHE) =+ (2- 1) exp{_%‘_;.i_ f L f('r)d'r}
fl_:;E(-r-C)

L 1-7%(x-q)

(h.18) F7(L) = £ (2 +1ﬁ_.'¢':"")m . exp i- _f-;i_"’ Lo £(7)d7 }

The solution of (4.1) is obtained by .subtracting (4.1%) from (4.13\
It 1»s




B ——t

ey

e

22

(%.15)  $(8) = wdy [FH(2) -F7(2))

¢ sin [4’15?' «-{ m(r-t)]
-+ 0T "

+ 1L ‘cos { 1 f --—————’e" f(r)d-r]
L Jl-‘r!(r-t;) ,,‘

It will be noticed that in the above analysis we have assumed
that P(z) -fi,(l,—"_)—:! vanishes like co/z, co $0, as z -+ 0. If
L

this is not the case, that is, if for example

(4.16) c, = -f&(r)dr =0
L

vhile

(4.17) ¢y = -fw(r)ar -0
L

then F(z) vanishes like cl/za, ¢y ¥ 0, as z —» 00 and the solution
of (4.6) as we have given it has to be adjusted. However, it is
clear from the above analysis that if (4.16) and (4.17) prevail then
the adjustment is easily made by taking F(z) = eG(Z)/(z-& 1.!1_---2-2)2
instead of (4.8), which leads to

2 i
(4,18) P(z) = . 2 [z-i l-2 exp{-%;{— f M}.
L (Jl-ﬂ'E (7-2)

o i
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5. Some Non-linear Problems in Potential Theory

The equations we have analyzed can be identified with certain
problems in potential theory., For example, consider the problem of

finding ¥(x,y) such that
Vx(Xs¥) + ¥y (x,¥) = O, y<o,

wy(x.O) =0, Ix] » 1

and subject to an additional condition on y = O, |x| < 1 which is
speciflied below. Let us suppose that Wy(x,o), [x] < 1, satisfies
the conditions imposed on $(t) in Section 1, and that each of
wx(x,y) and Vy(x,y) vanishes as z = x+1iy —» co. The harmonié

function wy(x,y) can then be written

W(xy)--—
-1 X) +y

-4 % f‘,Z».[(t:-x)2 +y2wy(t,o)dt
from which -1

1
d (t-X)i'y(t,O)dt
Sy ‘L (t-x)2+y2

A=

wxy(x,y) =

and by integration

(t-x)¥,(t,0)at
(x,y) = & fl Y
wx 24 T ‘1 (t_x)2+ y?
1 [ ¥ (t,0)dt
belm0) = 3 [ L
-1

[Ny |
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Now if we impose the additional condition
A
1 2 ¥y(2,0) +¥,(x,00¥(x,0) = £, x| <1

then é(t) = wy(t,o), |t] < 1, must satisfy

wx)w(x)f SLEIE | r(x) x| <1.
-1

If instead of I we impose

2 2 £ix
1I wy(x,o) -V (x,0) = =z Ixl <2
then f(t) = Wy(t,o), must satisfy
1 2
242 (x) [f i,‘:i’%] - £(x) , x| <1 .
-1 _
Finally, if the additional condition 1is
2 2 f(x)
I1X Wy(x,o)'i'#/x(X,o) = —1';2— ’ x|l <1
then $(t) = Wy(t,o), must satisfy
1 2
wzba(xh[f i{.‘i_)—g‘i] = £(x) , Ix} <21.
-1

We proceed to show that problem III can be solved for domains
more general than the half plane. For the half plane problem we
can write

¥ix,y) = £ F(z)
and then




7'(8) - K’}'(z) +1 DQ?'.‘Z) - Wx(x.y) - wy(x,y)

1l (t)at t)at
T &fiirzlr+?*)‘ji%-
which is the same as

i ! 1 (t)at
1 (5.1) 74(2)';‘/‘:%!2— .

The integral on the right hand side of (5.1) has been determined in

i connection with the problem of solving the integral equation III,

in Section 4, and we have

. 1
' J 2\7 } e
| (5.2) ? (z) - & (z- 1'1-'2 ) pr{ l-2 f Ltf(:)dt }
1; a1 (162 (e-2)

l“ where 7 is 1, or 2. The function y¥(x,y) can be obtained from (5.2)
. by an integration.

1' Let z = m({) = m(€ +in) be a function which maps the domain
D, with boundary C in the (-plane, conformally into the lower half
of the z-plane. Let the image of C1 a part of C, be the segment

y =0, |x] < 1; and let the image of C,, the remaining part of C,
be y = O, Ix] » 1. Under this mapping, u(x,y) is transformed into

vix,y) = B(E,n) = £F (m(O)),

a function harmonic in D.

Let 8 be the arc length measured along C from say the initial

! point of C;. If J= £(s) +in(s) 1s a point on C, then the norml
5 ‘ derivative of §(&,n) at the boundary is

e




(§,n)
(5.3) i!_aa__ﬂ_- %@@:[m(o’)]
- 3%&°F[m(0’)]
-0 3T i) .

If O"is on Cp, then %‘%ﬂ - %x_s_ is real and 5¢'[m(o’)] is real.

!h(ﬁ,'l) =0,

The tangential derivative of Y(£,n) at the boundary is

W(E,n)
(5.4) !ds =R arggd’) F'im(7)] .

Hence for o on 02

From (5.3) and (5.4) we see that for 0 on Cl

e +820,0) = |47 °l 'j'tm(mia
- |4l e[m@'[m(m}a+{&$'[mwn}?]

- |dme))®. fa)

T

Therefore if we take
2
o o
h(s) = Idmg 2' £{m(3)]
L 4
a8 prescribed, then

¥e,n) =R Fmig))

is harmonic in D, with normal derivative equal to zero along 32,
and with

26
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!:(E,n) +g§(e,n) = h(s)

prescribed along Cl. Thus the solution of problem III for the
domein D can be found by substituting z = m(L), t = m(Y>) and

2 ‘
£(t) = fm(o)] = -LALE)
|dm(7)|
ds
in (5.2). The substitution gives

(5.5) 9—?-&‘1511 -+ 0L0) [m(C) -1]1-1112(0'7

T 2
. exp{- l-m )f i"‘{I%ls_"l 'h(s)}'%"(sglds}
J1-0%(7) [m( o) -m(g)]

and then Y(€,n) can be obtained by integration.

¢y

The solution of problem III for particular domains and special
boundary values of the gradient is not new. For example, it is well
known that the method of conformal mapping can be used to find a
potential function Y(£€,n) such that

§ (En)+Y (&,q) =0, -0 <€ <00 ; <l<n <1l ;
8¢ m

¥,(€,n) =0 n=-1,1 ;-0 <£<0 ;

Wg(i.ﬂ)+¢:(€.n) = const. n=-11 ; O0<g <o .

This problem, or its equivalent, occurs in the hydrodynamical

theory of jets. However, the author has not seen the formula (5.5)
in the literature and it is probable that there are several problens
in fleld or flow theory for which it would be advantageous to use
(5.5) directly.
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In order to see a simple application of (5.5) consider the
problem of finding Y(%,n) such that

!ze‘g’"’ +!m(e.n) =0, “0 <§<m; 0<n<1
(5.6) !“(&,o) =0, -0 <€ <o
1§(€,1)+!:(e,1) =n(§), -0 <<oo
The function
(5.7) z = x+1y = coth 5 (£ +1n) = coth & ¢ = m({)

maps the infinite strip into the lower half of the z-plane and the
segment ‘-9. z = 0; I&(z)l‘ < 1 18 the image of clz L=¢+1;

- < € <o0. From (5.7) we find
m'(f) = - -E csch2 % (4

J1-m2(2) = [1-coth® I3 = -1 cson Tp

m(c) = m(A+1) = tanh -’2'» A

Jl-ma(‘f) = J1- tanh® % = sech -E- A

am(0” d T an a)
—a'se-)"a'x(tanhg?\)a-g, a-‘---l
--g-secha-gk ,

1 cosh%k.sinh%(

Bloj -m " eosh-g-(l-l;)
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The substitution of these quantities in (5.5) gives
cosh % -1 X4
(5.8) Sy Flm(s)] » t —2 2
T 2 stoh® L ¢ | sinh § ¢
o zlf“’ ﬂn[uocoshu %)\-h(x)]d)\ }
P(T 3
-0 cosh > (A=2)
which if we use
£l cosh 7\]d7\
(5.9)
> Ef cosh 12- (7\ g)
= #n2 + 2 £a{1+cosh F L] +2min
becomes
cosh % -1 4 2
(5.10) Eﬁ: Fim(g)] = ¢ 22 = .é" -[cosh% §+1]
2 sinh E-C sinh = [

®

1 h(A)aa
exp

Ifoo cosh -E- (A=2)

If we choose ¥ = 2 80 as to avoid a singularity at { = O we finally

have

(&)
a4 ~ . 1 h(A)dA
(5.11) gz Sm(£)] = 2 °"P{’If cosh § (x-c)}
-

which determines the derivatives of Y(£,n). That is, if

U(E,n) = R ML)

is required to satisfy (5.6) then

00
ML) = & {1 h(Ndh )
: o u[oo cosh % (A-C)}

.
LR e—-
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6. Some Non-linear Systems

In a recent paper, A. Beurling (5] proved that if D is a

region in BEuclidean n-space then the non-linear system

6(x)fk(t.,xw(t)dt = f£(x)
(6.1) D

wx)fk(x,t)m)at - g(x)
D

possesses a unique solution when the kernel k(t,x) and the
prescribed functions f(x), g(x) are suitably restricted. Since
Beurling's analysis does not cover the followlng singular one-

dimensional case

1
bx) [ BB L p(x)
-1

(6.2) <1 <x <1

w(x)f1 i%%;%E = g(x)
-1

and since this system is related to certain problems in potential
theory; 1t is of some interest to see that (6.2) can be reduced to
2 linear system by using the method of Section 2.

We suppose that each of the unknown functions belongs to
the class ﬁvl, defined in the introduction, and we suppose that
each of the prescribed functions f(x), g(x) belongs to the class
312. Then, by using the Hardy-Poincare-Bertrand formula as shown
in Section 2 it is easy to verify that

Sy

R e Rt i <0~




U,

3
1 [ - | f t)dt f (t)as|, 8P
(6.3) == i'ﬁ"" [“"’ 14‘:%'**‘*’ ILET]G"-;?;%
1
= -r2()u(¢) +f yrigs, [ dit)de
-1 -1

where
a_ -f b(t)dt
-1

1
bo -fl *(t)dt ™

Ir (6.2) possesses a solution, then (6.2) and (6.3) imply

2 ab
6.4) 2 fl (1-x")[£(x) +g(x)]dx _ oo
( 1'52 -1 x-T 1-&2

= -wPh(E)¥(E) +f1 zgﬂgz . f bit)at
-1 -1

or after multiplying by $(&)y(¢)

2
(6.5) »22(e)92(¢) +ﬁ§}?§l [f: ox )i flx) vglxi]ax ‘obo]
1
-Ne)f!{-":l%ﬁ-m)f )t L o
=1 -1

Using (6.2) again, equation (6.5) becomes

(6.6) 26208 )92(8) + M.ilféﬂw(c)-r(e)g(e) «0

vhere

1
2
‘ (1-x°)[f(x) +g(x))ax
p(g)-fl X - -.Obo Py
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Equation (6.6) fixes the product $(£)y(£). We find

(6.7)  $(&)W(E) = k(¢) = - P8 tJFz(g()::;’:‘rm;(e)(1-e2)? .
wrearh

With this product known the system (6.2) can be written

[He g e
-1

(6.8) L
f ié-g:)%& = é{—;—} . &(X) .
-1

The last equations can now be solved by Carleman's method [4].
Notice that if each of f(x) and g(x) is integrable and we

require each of the unknown functions to satisfy the condition (B)
of Section 2 then

1 1
f f(x)ax -fl ¢(x)f ﬂ{_).d;_dx_. -f *(t)fl Q(:):ixdt
-1 -1 -1 -1

-1

1l
- - [ attiar
-1

or
(6.9) f (f(x) +g(x))ax = 0 .
-1
Also,
J[} xf(x)ax = -\/; W(t)\/} 2-838) §x)axat
. 21 -1
1

1 ‘
- -f *(t)dt-f $(x)ax -fl'tw(t)fﬂ’;‘-_&’é‘&
-1 -1 -1 -1
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which determines a b,, that 1s,

-a,b, -\/} x[f(x)+g(x)]dax .
-1

Hence for solutions which satisfy (B), F(&)/(l-tz) becomes

Jr l.i!%ﬁ?%i!llﬁ! \/} [f(x)+g(x))ax

and since the second term on the right is zero by (6.9) we have

1
F(E) _ ]‘rgx2+§(x)|dx
1-¢ [ e '

-1

We remark in passing that the system

Y (t)dt

b (t)dt

can be reduced to (6.2) by using the substitutions

-1 €< x <]

Ol(t) = $(-t) , £,(x) = £(-x) ,

¥, (t) = w(t) gy (x) = -glx) .

The systems noted above are not, of course, the only non-
linear systems that can be solved by using the technique of
Section 2. The Hardy-Poincare-Bertrand formula can be used to
linearize a number of other systems in which the non-linearity is
due to the presence of a product in which an unknown function is

P L ™
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multiplied by an unknown Hilbert transform or an unknown Stieltjes

transform. As two additional examples we cite the systems

1

Nx)fl HEME | £(x) 4 b(x)

v(x) f i{-t:%“—t- = g(x) +A¥(x)
1

1 1
0 0
1
0 0

The last system plays an important role in the theory of radiative

transfer.




1)
(2]
(3]
[4)

(5]
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